A Machine Learning Approach to Modeling Human Migration
نویسندگان
چکیده
Human migration is a type of human mobility, where a trip involves a person moving with the intention of changing their home location. Predicting human migration as accurately as possible is important in city planning applications, international trade, spread of infectious diseases, conservation planning, and public policy development. Traditional human mobility models, such as gravity models or the more recent radiation model, predict human mobility flows based on population and distance features only. These models have been validated on commuting flows, a different type of human mobility, and are mainly used in modeling scenarios where large amounts of prior ground truth mobility data are not available. One downside of these models is that they have a fixed form and are therefore not able to capture more complicated migration dynamics. We propose machine learning models that are able to incorporate any number of exogenous features, to predict origin/destination human migration flows. Our machine learning models outperform traditional human mobility models on a variety of evaluation metrics, both in the task of predicting migrations between US counties as well as international migrations. In general, predictive machine learning models of human migration will provide a flexible base with which to model human migration under different what-if conditions, such as potential sea level rise or population growth
منابع مشابه
MODELING OF FLOW NUMBER OF ASPHALT MIXTURES USING A MULTI–KERNEL BASED SUPPORT VECTOR MACHINE APPROACH
Flow number of asphalt–aggregate mixtures as an explanatory factor has been proposed in order to assess the rutting potential of asphalt mixtures. This study proposes a multiple–kernel based support vector machine (MK–SVM) approach for modeling of flow number of asphalt mixtures. The MK–SVM approach consists of weighted least squares–support vector machine (WLS–SVM) integrating two kernel funct...
متن کاملA Versioning Approach to VM Live Migration
In the context of virtual machines live migration, two strategies called “pre-copy” and “post-copy” have already been presented; but each of these strategies works well only in some circumstances. In this paper, we have a brief presentation of QAVNS and then introduce a new approach which is based on the concept of "informational object", assigning QAVNS-scheme-revision number, and observing th...
متن کاملMachine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملA New Hybrid Meta-Heuristics Approach to Solve the Parallel Machine Scheduling Problem Considering Human Resiliency Engineering
This paper proposes a mixed integer programming model to solve a non-identical parallel machine (NIPM) scheduling with sequence-dependent set-up times and human resiliency engineering. The presented mathematical model is formulated to consider human factors including Learning, Teamwork and Awareness. Moreover, processing time of jobs are assumed to be non-deterministic and dependent to their st...
متن کاملEmotion Detection in Persian Text; A Machine Learning Model
This study aimed to develop a computational model for recognition of emotion in Persian text as a supervised machine learning problem. We considered Pluthchik emotion model as supervised learning criteria and Support Vector Machine (SVM) as baseline classifier. We also used NRC lexicon and contextual features as training data and components of the model. One hundred selected texts including pol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1711.05462 شماره
صفحات -
تاریخ انتشار 2017